(3x^2-8x-3)/(9x^3+3x^2+3x+1)

Simple and best practice solution for (3x^2-8x-3)/(9x^3+3x^2+3x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x^2-8x-3)/(9x^3+3x^2+3x+1) equation:


D( x )

9*x^3+3*x^2+3*x+1 = 0

9*x^3+3*x^2+3*x+1 = 0

9*x^3+3*x^2+3*x+1 = 0

9*x^3+3*x^2+3*x+1 = 0

9*x^3+3*x^2+3*x+1

3*x^2*(3*x+1)+3*x+1

(3*x^2+1)*(3*x+1)

(3*x^2+1)*(3*x+1) = 0

( 3*x+1 )

3*x+1 = 0 // - 1

3*x = -1 // : 3

x = -1/3

( 3*x^2+1 )

3*x^2 = -1 // : 3

x^2 = -1/3

x in (-oo:-1/3) U (-1/3:+oo)

(3*x^2-(8*x)-3)/(9*x^3+3*x^2+3*x+1) = 0

(3*x^2-8*x-3)/(9*x^3+3*x^2+3*x+1) = 0

3*x^2-8*x-3 = 0

3*x^2-8*x-3 = 0

DELTA = (-8)^2-(-3*3*4)

DELTA = 100

DELTA > 0

x = (100^(1/2)+8)/(2*3) or x = (8-100^(1/2))/(2*3)

x = 3 or x = -1/3

(x+1/3)*(x-3) = 0

9*x^3+3*x^2+3*x+1 = 0

9*x^3+3*x^2+3*x+1

3*x^2*(3*x+1)+3*x+1

(3*x^2+1)*(3*x+1)

((x+1/3)*(x-3))/((3*x^2+1)*(3*x+1)) = 0

( x+1/3 )

x+1/3 = 0 // - 1/3

x = -1/3

( x-3 )

x-3 = 0 // + 3

x = 3

x in { -1/3}

x = 3

See similar equations:

| 4x-1+3=3 | | b=x-a | | (1/7)/(5/7) | | 4+3=-2 | | a^3-32a/(-8a) | | (56r-3r^2)=0 | | x+80/2=65 | | 3/4+24 | | ay-b=cz | | 6w^3v^4= | | 35x^2=-x+12 | | 9(x-8.1)=6.3 | | 75x^2+5x-2=8 | | 3x+61.5=180 | | 3.7t+2.64=-11.79 | | 3.7t+2.64=-1.79 | | 6/5k+8/5-2k+2/5+2/5k-5 | | ln(x-5)+ln(2)=ln(14) | | 3.1x=20.46 | | 9x^2+11x+4=2 | | x-8=4.59 | | 9/2-6i | | -6y=5.58 | | 26-7/3x=-7/3x+26 | | 3x+67.5=180 | | -28x^2=12x | | (x-3)(x+4)(x-6)=0 | | -g+2(3+g)=4(g+10) | | 8m=25+3m | | 11.2x+11=4.2x+25 | | 0.1r=9 | | 5x^3-2x^2-3x=0 |

Equations solver categories